Bone Conduction Implants

Krissie Bratt Rigsby, Au.D.
Pediatric Audiologist
Vanderbilt Bill Wilkerson Center
National Center for Childhood Deafness

Lisa Vaughan-Christensen, Au.D.
Pediatric Audiologist
Arkansas Children’s Hospital
Outline

- **Overview of Bone Conduction Implants**
 - History
 - Surgery
 - Candidacy

- **New Devices**
- **Selection/Verification/Validation**

*Disclosure: *I do not have any financial or other relationship with any vendor or manufacturer represented in the following discussion(s).*
History

• First application of titanium implants in the temporal bone was in 1977
• Pioneered in Gothenburg Sweden
• Has become a well-established and successful method of auditory rehabilitation
• Initially for conductive and mixed hearing losses, but now used for single sided deafness
PATHWAYS
for bone conduction

- **Ear canal**: cartilaginous portion of ear canal resonates, creates sound waves in canal to strike TM
 - Most sound leaks out the open EAC

- **Middle ear**: as skull moves with sound vibrations, the bony chain swings/sways and causes vibrations to the inner ear (similar to air conduction hearing aid)

- **Inner ear**: bones of the skull are compressed; this movement causes changes in size and shape of cochlea which creates fluid movement and triggers response
Composite BC Stimulation

OUTER, MIDDLE, & INNER ear stimulation

Hearing response of the inner ear is a direct result of all three stimulation pathways
Term “osseointegration”: os meaning “bone” and integro meaning “renew”; the process by which living bone tissue bonds with titanium.
Surgical and Healing Process

- Outpatient surgery, relatively non-invasive
- Surgically placed implant is connected to an abutment that will protrude through the skin
- Small, hair-free, possibly numb area will remain around the abutment
- Dressing and pressure bandage for one to two weeks following surgery
- 3 months for osseointegration before external sound processor is fit for adults
- Procedure for Very Young Children - Two Stage Operation: The first stage involves drilling holes for the fixture and placing a sleeper receptor under the skin and allowing the skull to continue to thicken. After osseointegration (can be 6-8 months) the "post" is attached during a second surgery
Abutment
Processor

- External sound processor which connects to the implant via an abutment
Softband
New Devices

1) BP 100-Cochlear Corp

2) Ponto-Oticon Medical
Introducing....Oticon Ponto

• Why Oticon Medical?
 • The most up to date product...
 • Oticon RISE platform, Superb design
 • Intuitive and flexible fitting, Innovative improvements
• From a solid company...
 • 100 years of experience in traditional hearing aids
 • Based on and committed to a scientific approach to R&D
 • Great people and service organization
• Developed and supported by a dedicated and experienced team of experts...

Courtesy of Oticon Medical

Vanderbilt Bill Wilkerson Center
Design is not just how it looks – it is how it works

- Advanced processing
- Easy to use
- Easy to configure

Courtesy of Oticon Medical

Vanderbilt Bill Wilkerson Center
Design is not just how it looks – it is how it works

- Advanced features for new technology
 - Big and easy to find/use program button
- Automatic selection of best user features
- Self learning volume control
- Battery warning system

Courtesy of Oticon Medical

Vanderbilt Bill Wilkerson Center
Design is not just how it looks – it is how it works

- Easy to configure
 - Can be adapted to any user need
 - Special programs for special needs
 - Can turn off...
 - Volume control
 - Directionality
 - Noise reduction

Courtesy of Oticon Medical

Vanderbilt Bill Wilkerson Center
Design is not just how it looks – it is how it works

<table>
<thead>
<tr>
<th>Features</th>
<th>Ponto Pro</th>
<th>Ponto</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-channel frequency response shaping</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multiband Adaptive Directionalität</td>
<td>Automatic</td>
<td>Manual</td>
</tr>
<tr>
<td>Tri-state Noise Reduction</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Data Logging</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Learning Volume Control</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wind Noise Reduction</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Output AGC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Up to 4 programs</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Volume Control</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Start-up delay</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mute function</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Low battery warning</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Telecoil/DAI/FM input</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fitting software, Genie Medical</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Styles available</td>
<td>Left and right</td>
<td>Left and right</td>
</tr>
<tr>
<td>Color palette</td>
<td>Chroma Beige Mocca Brown Diamond Black</td>
<td>Chroma Beige Mocca Brown Diamond Black</td>
</tr>
</tbody>
</table>

Courtesy of Oticon Medical

Vanderbilt Bill Wilkerson Center
2009 Baha portfolio

- **Cochlear Baha® BP100**
 - Client need:
 - Top performance, fully automatic, head-worn, All-round device

- **Baha Intenso™**
 - Client need:
 - Head-worn power, Discreet device

- **Baha® Cordelle II**
 - Client need:
 - Super power, body-worn

Vanderbilt Bill Wilkerson Center

Bone Conduction Thresholds

- Bone-conduction thresholds ≤ 45 dB HL averaged across 500, 1000, 2000, and 3000 Hz
- Air-conduction thresholds may extend into this area
Brilliance in design

- Modern design for greater cosmetic appeal
- Easy FM/phone integration with Europin
- Use of skin-friendly titanium platform
- Symmetrical device – use BP100 on left or right side, inventories are reduced
- Status indication with beeps and LEDs
- Tactile button user interface for ergonomic operation reducing the risk for accidental program changes
Simplicity in use - flexibility in fitting

- Ready to wear
- Button programming
- Cochlear Baha Fitting Software

Vanderbilt Bill Wilkerson Center
Designed for **kids**

- Visual and audible indicators provide sound processor status and low battery warning
- Keylock secures the ergonomic buttons from accidental changes
- The optional tamper-proof door keeps the battery from being removed

courtesy of Cochlear Corp
• Designed for kids

Safety line secures BP100 to the child’s clothing to prevent it from being lost.

The standard Europin connector allows easy integration with classroom FM systems.

Baha Softband compatibility for infants and toddlers.

• courtesy of Cochlear Corp

Vanderbilt Bill Wilkerson Center
FDA Clearance

1996 - The Baha System was cleared to treat mixed and conductive hearing loss.

1999 - The Baha System was cleared for pediatric use in children age five and older.

2001 - The Baha System was cleared for bilateral fittings. In 2002, the Baha® Softband was introduced for children under the age of five.

2002 - The Baha System was cleared for use in patients with unilateral sensorineural hearing loss also known as single sided deafness™ (SSD).

2009 - Oticon Ponto and Cochlear BP100 cleared as programmable devices
Candidacy

- **Conductive/ mixed hearing loss**
 - 5 years of age and older
 - BC PTA for **BP100** 45 dBHL (at .5, 1, 2, 3 kHz)
 - BC PTA for **Intenso** 55-60 dBHL
 - 60% or better monosyllabic word score

- **Single Sided Deafness (SSD)**
 - Transcranial routing from the deaf side to the WNL ear
 - 5 years of age or older
 - Profound SNHL and normal hearing in the opposite ear
 - 20 dBHL AC PTA (.5k, 1k, 2k, 3kHz)

- **Asymmetrical hearing losses? (profound one ear, SNHL in contralateral ear)**
Audiologic Assessment
Pre-operative

PEDiATRICS
- Puretone & speech audiometry
- Speech in noise testing
 - Soundfield NuCHIPS, PBK, WIPI
Audiologic Assessment
Pre-operative

- Use a Baha with a higher force output during testing (for example: patient is a candidate for BP 100, use the Intenso for the workup)
- Significant difference in headband vs. implant of 5-20 dB in the frequency range of 1000-4000Hz.
- Improvement in SRT of 4-7dB which can translate to 20-40% difference in speech understanding

(Versraeten et al. 2008)
Audiologic Assessment
Pre- and post-operative

PEDiATRIC
• Outcome inventory measurements
 • Children’s Home Inventory for Listening Difficulties (CHILD)
 • Children’s Outcome Worksheets (COW)
 • Screening Instrument for Targeting Educational Needs (SIFTER)
 • Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS)
Verification

• Aided testing in the soundfield
Validation

- Outcome measures
- Speech pathologist
- Teachers
- Parents
- Aided Thresholds
Evidence-based practice:

- Baha > BCHA
- Baha < = > ACHA

- Limited studies with random discourse in reverberant, multi-source noise conditions (i.e. real world situations)
- Limited studies using pediatric patients

- **Objective:** To analyze the short-, medium-, and long-term benefits from and satisfaction with the Baha for patients with profound unilateral SNHL.

- **Outcome measures used:** Speech Perception in Noise, HINT, localization testing, APHAB, HHIA, and SSD questionnaire.

- **Conclusion:** The Baha is effective at reducing psychosocial consequences of unilateral profound SNHL for the long-term.

- Improvement in speech understanding occurred when the primary signal was spatially separated from BGN.

- Localization performance did not improve with Baha use.

- Overall, patients were satisfied with their Baha and would still elect to have this procedure if given a second chance.

- **Objective:** to report on follow-up of a case series of teenage patients who received Bahas to compensate for SSD.

- **Results:** There were higher CHILD scores post-implant, indicating improved child and parent satisfaction. Better results on HINT post-implant indicated an improved ability to understand speech in noise.

- **Conclusion:** The Baha appeared to be of benefit to these teenage patients with unilateral hearing loss.

- **Objective:** To evaluate the use of bone-anchored hearing aids (Bahas) in children with single-sided deafness.

- **Results:** Preimplant mean HINT scores at speech-noise ratios of 0, +5, and +10 dB were 42%, 76%, and 95%, respectively. Postimplant mean HINT scores improved to mean speech-noise ratios of 82%, 97%, and 99% at 0, 5, and 10 dB, respectively. The CHILD scores also improved from mean preimplant ratings of 4.49 and 4.60 for patients and parents, respectively, to postimplant ratings of 6.90 and 7.10. Both teenagers (n = 15) and children younger than 13 years (n = 7) demonstrated improved HINT and CHILD scores. The complication rate was 17%.

- **Conclusions:** Bone-anchored hearing aids are a durable treatment option that can achieve noticeable improvements in hearing in noise and in listening difficulties in children with profound unilateral sensorineural hearing loss.

- **Objectives:** To evaluate the validity of a bone-anchored hearing aid (BAHA) Softband (fitted unilaterally and bilaterally) in young children with bilateral congenital aural atresia.

- **Results:** The electro-acoustic measurements showed minor differences in gain between the three devices. At a reduced volume setting, the mean input level at which the output levelled off was largely comparable between the BAHA Classic and the conventional device, but somewhat poorer with the BAHA Compact. Both children showed speech and language development that was in accordance with their cognitive development.

- **Conclusions:** The BAHA Softband was a valid intervention in children with congenital bilateral aural atresia who were too young for percutaneous BAHA application

 - **N = 2**

• Objective: The purpose of this study was to (a) determine benefit of Baha coupled to the Softband for infants and children with bilateral conductive hearing loss; and (b) verify audibility of the speech spectrum for octave frequencies 500 through 4000 Hz.

• Results: Results revealed an improvement in soundfield thresholds with Baha amplification for the four octave frequencies.

• Conclusions: Benefit of the Baha in providing audibility of the speech spectrum for infants and children with bilateral congenital conductive hearing loss has been demonstrated.

• N = 20
Softband Case

- Failed NBHS
- Pierre Robin Sequence
- ABR at 3 months 8 days of age confirmed moderate CHL AU
- Fit with loaner Baha at 3 months 20 days of age
Softband Case
Implant Case

- Previously worn BTEs for bilateral moderate CHL
- Normal pinnae AU
- Chronic otitis externa
- Recommended Baha trial 3-14-2005
- First Stage Baha surgery 8-24-2005
- Second Stage Baha surgery 2-27-2006
- Implanted bilaterally
Implant Case
Implant Case

- Family choice
- Aided threshold were similar
- Never wore a Softband
- Chronic otitis externa was their priority
- Still uses FM with Divino as she did with the BTEs
SSD Case

- 14 y/o female
- Normal hearing right ear
- Profound loss left ear
- Receives tutoring at school
SSD Case

<table>
<thead>
<tr>
<th></th>
<th>Pre-Implant</th>
<th>Post-Implant 3 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>HINT 0 SNR</td>
<td>11%</td>
<td>94%</td>
</tr>
<tr>
<td>HINT +5 SNR</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>HINT +10 SNR</td>
<td>91%</td>
<td>100%</td>
</tr>
<tr>
<td>CHILD – Alivia</td>
<td>3.73</td>
<td>7.87</td>
</tr>
<tr>
<td>CHILD- grandmother</td>
<td>2.80</td>
<td>7.00</td>
</tr>
<tr>
<td>SSQ – speech</td>
<td>5.50</td>
<td>7.56</td>
</tr>
<tr>
<td>SSQ – Spatial</td>
<td>1.50</td>
<td>7.64</td>
</tr>
<tr>
<td>SSQ - Quality</td>
<td>6.25</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Vanderbilt Bill Wilkerson Center
References

