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Sensorineural hearing loss (SNHL) is a multifaceted
condition with profound medical, social, and cultural
ramifications. Although various terms are used to refer
to people with SNHL, that most commonly used by the
lay public is deaf (with a lower case “d”). Deafness (with
an uppercase “D”) defines a cultural group of people
united by distinct traditions and strengths arising from
the use of sign language as a communication form. Most
people who communicate primarily by sign language
have congenital SNHL, and many are the offspring of
Deaf parents. People who acquire SNHL in later
childhood or adulthood generally continue to use oral
communication, and few see themselves as members of
the Deaf community.

Doctors, teachers, audiologists, and other
professionals often use the term “hearing impaired” to
describe people with any degree of SNHL. Although
intended to be neutral, this term arouses powerful
emotions for many people, especially those in the Deaf
community who reject the notion of SNHL as an
impairment. Since no term is completely encapsulating,
in this Seminar we use SNHL to refer to people who by
audiometric testing have any degree of permanent
SNHL. We focus on SNHL in children and explore
advances in diagnosis, classification, epidemiology,
pathogenesis, management, treatment, and prevention.

Diagnosis
The diagnosis of SNHL depends on the demonstration
of reduced hearing acuity by auditory testing. Hearing is
measured in decibels (dB) with the threshold of 0 dB for
each frequency denoting the value at which normal
young adults perceive a tone burst of a given intensity
and frequency 50% of the time. A child’s hearing acuity
is classed as normal if it is within 20 dB of these defined
thresholds. Severity of hearing loss is graded as mild
(20–40 dB), moderate (41–55 dB), moderately severe
(56–70 dB), severe (71–90 dB), or profound (�90 dB),
and the frequency of hearing loss is designated as low
(�500 Hz), middle (501–2000 Hz), or high (�2000 Hz;

figure 1).1 Although there is no agreed demarcation,
people with severe or profound hearing loss are
commonly referred to as deaf and those with mild or
moderate hearing loss as hard of hearing.

Hearing acuity can be measured with either objective
or subjective testing conditions. Physiological tests
objectively assess the functional status of the auditory
system and can be done at any age. These tests include
auditory brainstem response testing (also known as
brainstem auditory evoked response), otoacoustic
emissions, auditory steady-state response, and
impedance testing (tympanometry). The ability to record
normal otoacoustic emissions, auditory brainstem
responses, and auditory steady-state responses is
dependent on normal middle-ear function.

Auditory brainstem response testing measures the
stimulus-evoked electrophysiological response of the
VIIIth cranial nerve and brainstem to clicks or tone
bursts presented to the external ear. The response is
recorded from electrodes on the skin. Wave V detection
thresholds correlate best with hearing sensitivity in the
range 1·5–4·0 kHz in neurologically normal children.
The maximum output value for clinical systems
measuring auditory brainstem responses is 130 dB
sound pressure level, but after correction for normal
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Sensorineural hearing loss in children
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During the past three to four decades, the incidence of acquired sensorineural hearing loss (SNHL) in children living

in more developed countries has fallen, as a result of improved neonatal care and the widespread implementation of

immunisation programmes. The overall decrease has been accompanied by a relative increase in the proportion of

inherited forms of SNHL. The contribution made by one gene in particular, GJB2, to the genetic load of SNHL has

strongly affected the assessment and care of children with hearing loss. These changes in the incidence of SNHL

have not been seen in children living in less developed countries, where the prevalence of consanguinity is high in

many areas, and both genetic and acquired forms of SNHL are more common, particularly among children who live

in poverty. Focused genetic counselling and health education might lead to a decrease in the prevalence of inherited

SNHL in these countries. Establishment of vaccination programmes for several vaccine-preventable infectious

diseases would reduce rates of acquired SNHL. Although the primary purpose of such programmes is the prevention

of serious and in many cases fatal infections, a secondary benefit would be a reduction in disease-related

complications such as SNHL that cause permanent disability in survivors.

Search strategy and selection criteria

We did a computerised and manual search on PubMed to
identify studies, with particular focus on original reports
published within the past 10 years. Selection criteria included
a judgment about the importance of studies and their
relevance to the well-informed general practitioner.
Keywords used were "acquired deafness", "genetic deafness",
or "sensorineural hearing loss" plus "neonates", "children", or
"young adults" plus "[a]etiology", "diagnosis",
"classification", "prevention", "management", or "early
intervention. There was no restriction on language of
publication.
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behavioural thresholds of 30–36 dB sound pressure
level, the maximum presentation values for click stimuli
are 94–100 dB sound pressure level.2

Otoacoustic emissions are sounds originating within
the cochlea. They are measured in the external auditory
canal and primarily reflect the activity of outer hair cells
across a broad frequency range. These sounds can be
emitted spontaneously, in response to acoustic stimuli
of short duration (transient evoked otoacoustic
emissions), in response to two stimulus tones of
different frequencies (distortion-produced otoacoustic
emissions), or in response to a continuous tone
(sustained-frequency otoacoustic emissions). When
hearing loss is greater than 40–50 dB, transient evoked
otoacoustic emissions are typically absent; an important
exception, however, is auditory neuropathy, which is
characterised by the presence of otoacoustic emissions
and the absence of a normal auditory brainstem
response.

The auditory steady-state response is an
electrophysiological measure of hearing acuity that has
been used extensively in Australia, Asia, and Canada and
is now being used much more frequently in the USA
and Europe. Skin electrodes are used to measure
whether the auditory response is phase-locking to
changes in a continuous tonal stimulus. Since the
stimulus is a continuous signal, a higher average sound
pressure level can be delivered than is possible with click
stimuli. This difference means that auditory steady-state
response testing can provide an estimate of hearing
sensitivity in many children who show no response to
auditory brainstem response testing.2,3

Impedance audiometry does not assess hearing.
Instead, it examines the peripheral auditory system by
measuring middle-ear pressure, tympanic-membrane
movement, Eustachian-tube function, and mobility of
the middle-ear ossicles (figure 2).

Subjective tests of hearing acuity assess how a child
processes auditory information and include behavioural
and pure-tone testing. Behavioural observation
audiometry is used in infants aged 0–6 months;
however, because it is highly tester dependent, it has
been supplanted by auditory brainstem response,
otoacoustic emissions, and auditory steady-state
response testing. Visual reinforcement audiometry is
used in children aged 6 months to 2·5 years and can be
used to generate a reliable, complete audiogram,
although results depend on the child’s maturational age
and the skill of the tester.

Pure-tone audiometry is used to establish conduction
thresholds in air, bone, or both by identifying the lowest
intensity at which a child hears a pure tone half of the
time. Octave frequencies from 250 Hz (close to middle
C) to 8000 Hz are tested by use of earphones or a
vibrator. To assess air conduction thresholds, sounds are
presented through earphones, and the observed results
depend on the condition of the external ear canal, middle
ear, and inner ear. To assess bone conduction
thresholds, sounds are presented through a vibrator
placed on the mastoid cortex or forehead, thereby
bypassing the external and middle ears.

Pure-tone audiometry requires the active participation
of the child. Because test instructions can be difficult to
understand for children younger than 5 years, a
modification called conditioned play audiometry is
commonly used to obtain a complete frequency-specific
audiogram for each ear in children aged 2·5–5·0 years.1

Classification
In addition to the degree and frequency of SNHL for a
given child, other features, such as type of loss, time of
onset, and causality should be defined wherever
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Figure 2: Cross-section of the outer, middle, and inner ear
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Figure 1: An audiogram showing grades of hearing loss on the right and the
range of conversational speech (clear crescent)
Hearing is measured in dB to accommodate the wide dynamic range of normal
human hearing. Consonants are generally spoken more softly and are higher
pitched than vowels. As a result, with even mild to moderate hearing loss,
understanding of speech can be difficult.
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possible. In general, type of loss is categorised as
conductive, sensorineural, or mixed and either stable or
progressive. Time of onset is established as either
congenital or acquired (or late-onset). Causality is
broadly divided into genetic (hereditary) or non-genetic
(environmental) categories.

Although this approach enables the clinician to
formulate a more complete differential diagnosis with
treatment options and prognosis, it does belie the
complex interaction of genetics and environment that
confounds the study of SNHL. For example, noise is an
increasingly important cause of SNHL; although noise-
induced hearing loss can be viewed as the simple cause-
and-effect consequence of acoustic trauma, genetic
factors are an important determinant of outcome in a
noisy environment.4

Our rapidly evolving understanding of the genetics of
hearing is refining much of our knowledge about the
aetiology, treatment, and prevention of SNHL.
Hereditary SNHL is most commonly inherited as a
simple mendelian trait and consequently can be
classified by mode of inheritance as autosomal
dominant, autosomal recessive, or X-linked; matrilineal
inheritance associated with mitochondrial mutations
occasionally also occurs. Inherited SNHL generally
appears as an isolated physical finding (non-syndromic
SNHL; table 1), but about 30% of cases are syndromal
(ie, associated with other disorders, such as kidney, heart
or vision abnormalities; table 2).

Epidemiology 
SNHL is the most common sensory deficit in more
developed societies.5,6 In the USA, congenital SNHL
occurs about three times more frequently than Down’s
syndrome, six times more frequently than spina bifida,
and over 50 times more frequently than
phenylketonuria.7–9 An estimated 4000 infants are born
each year with severe to profound bilateral hearing
loss,10,11 and another 8000 are born with unilateral or
mild to moderate bilateral SNHL.12 Thus, at least one

child in 1000 is born with bilateral SNHL of at least 40 dB,
including four profoundly per 10000 deaf infants.13–20

Hearing losses of this degree affect educational
attainment, the likelihood of future employment, future
earnings, the use of health-care systems, and life
expectancy.10,21

These data are consistent with findings of universal
newborn hearing screening programmes in other more
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Locus Gene Audio phenotype

DFN3 POU3F4 Conductive hearing loss due to stapes fixation mimicking otosclerosis; superimposed 
progressive SNHL.

DFNA1 DIAPH1 Low-frequency loss beginning in the first decade and progressing to all frequencies to 
produce a flat audioprofile with profound losses throughout the auditory range.

DFNA2 KCNQ4 Symmetrical high-frequency sensorineural loss beginning in the first decade and 
progressing over all frequencies.

GJB3 Symmetrical high-frequency sensorineural loss beginning in the third decade.
DFNA 6/14/38 WFS1 Early-onset low-frequency sensorineural loss; about 75% of families dominantly 

segregating this audioprofile carry missense mutations in the C-terminal domain of 
wolframin.

DFNA10 EYA4 Progressive loss beginning in the second decade as a flat to gently sloping audioprofile 
that becomes steeply sloping with age.

DFNA13 COL11A2 Congenital mid-frequency sensorineural loss that shows age-related progression across 
the auditory range.

DFNA15 POU4F3 Bilateral progressive sensorineural loss beginning in the second decade.
DFNA20/26 ACTG1 Bilateral progressive sensorineural loss beginning in the second decade; with age, the 

loss increases with threshold shifts in all frequencies, although a sloping configuration is 
maintained in most cases.

DFNB1 GJB2, Hearing loss varies from mild to profound. The most common genotype, 
GJB6 35delG/35delG, is associated with severe to profound SNHL in about 90% of affected 

children; severe to profound deafness is observed in only 60% of children who are 
compound heterozygotes carrying one 35delG allele and any other GJB2 SNHL-causing 
allele variant; in children carrying two GJB2 SNHL-causing missense mutations, severe to 
profound deafness is not observed.

DFNB4 SLC26A4 DFNB4 and Pendred’s syndrome (table 2) are allelic. DFNB4 hearing loss is associated 
with dilatation of the vestibular aqueduct and can be unilateral or bilateral. In the high 
frequencies, the loss is severe to profound; in the low frequencies, the degree of loss 
varies widely. Onset can be congenital (prelingual), but progressive postlingual loss is 
also common.

mtDNA 12S rRNA Degree of hearing loss varies from mild to profound but is generally symmetrical; high 
1555A>G frequencies are preferentially affected; precipitous loss in hearing can occur after 

aminoglycoside therapy.

DFN, X-linked; DFNA, dominant; DFNB, recessive; integer, locus number.

Table 1: Common types of hereditary non-syndromic SNHL

Gene Phenotype

Dominant
Waardenberg PAX3 Major diagnostic criteria include dystopia canthorum; congenital hearing loss; heterochromic irises; white forelock; and an affected first-degree relative. About 60% 
(WS1) of affected children have congenital hearing loss; in 90%, the loss is bilateral.
Waardenberg MITF, others Major diagnostic criteria are as for WS1 but without dystopia canthorum. About 80% of affected children have congenital hearing loss; in 90%, the loss is bilateral.
WS2
Branchio- EYA1 Diagnostic criteria include hearing loss (98%), preauricular pits (85%), and branchial (70%), renal (40%), and external-ear (30%) abnormalities. The hearing loss can be 
otorenal conductive, sensorineural, or mixed, and mild to profound in degree.
Recessive
Pendred’s SLC26A4 Diagnostic criteria include sensorineural hearing loss that is congenital, non-progressive, and severe to profound in many cases, but can be late-onset and 

progressive; bilateral dilatation of the vestibular aqueduct with or without cochlear hypoplasia; and an abnormal perchlorate discharge test or goitre.
Usher (USH1) USH1A, MYO7A, USH1C, Diagnostic criteria include congenital, bilateral, and profound hearing loss, vestibular areflexia, and retinitis pigmentosa (commonly not diagnosed until tunnel vision

CDH23, USH1E, PCDH15, and nyctalopia become severe enough to be noticeable).
USH1G

Usher (USH2) USH2A, USH2B, USH2C, Diagnostic criteria include mild to severe, congenital, bilateral hearing loss and retinitis pigmentosa; hearing loss may be perceived as progressing over time because 
others speech perception decreases as diminishing vision interferes with subconscious lip reading.

Usher (USH3) USH3 Diagnostic criteria include postlingual, progressive sensorineural hearing loss, late-onset retinitis pigmentosa, and variable impairment of vestibular function.

Table 2: Common types of syndromic SNHL 
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developed countries, which report identification of two
to four children per 1000 with SNHL despite the
difficulty in obtaining diagnostic results for 10–40% of
the infants who do not pass the screening test.22–30

Although data from less developed countries are limited,
those available suggest that the incidence of congenital
SNHL is much higher in these countries.31–33

Genetic SNHL in neonates 
By aetiology, more than half of neonates with SNHL
have inherited hearing loss (figure 3). In most cases,
both parents have normal hearing and, as a result of
simple mendelian recessive inheritance, have a child
with non-syndromic SNHL (75–80% of cases).
Autosomal dominant (about 20%), X-linked (2–5%),
and mitochondrial (about 1%) contributions to the
burden of inherited congenital SNHL also occur.

Because autosomal recessive SNHL is heterogeneous,
the finding that mutations in a gene called GJB2
account for roughly half of hereditary cases of SNHL in
the USA, many European countries, Israel, and
Australia was quite unexpected. GJB2-related SNHL
also has been repeatedly described in several Asian,
Latin American, and African countries, but it is less
common in these regions.34–42

SNHL-causing allele variants of GJB2 alter function of
the encoded protein, connexin 26, in the inner ear.
Connexin 26 aggregates in groups of six around a
central 2·3 nm pore to form a doughnut-shaped
structure called a connexon. The connexons from
contiguous cells covalently bond to form intercellular
channels. Aggregations of connexons are called plaques
and are the constituents of gap junctions.43–45 The gap-
junction system might be involved in potassium
circulation, allowing ions that enter hair cells during
mechanosensory transduction to be recycled to the stria
vascularis (figure 4).46,47

The most common form of syndromic hereditary
SNHL is Pendred’s syndrome. It is characterised by
sensorineural hearing impairment that is congenital in
most cases and commonly severe to profound, although
mild to moderate progressive hearing loss also occurs;
bilateral dilatation of the vestibular aqueduct with or
without cochlear hypoplasia (the presence of both
dilatation of the vestibular aqueduct and cochlear
hypoplasia is known as Mondini’s malformation or
dysplasia); and either an abnormal perchlorate
discharge test or goitre (figure 5). Pendred’s syndrome
is rarely recognised in the neonatal period because the
thyroid abnormality does not present at birth and
temporal-bone CT is seldom included as part of the
neonatal screening battery. The majority of affected
children have mutations in a gene called SLC26A4 on
chromosome 7q31.48

Acquired SNHL in neonates 
Although many women are exposed to infectious
pathogens during pregnancy, only a few of these
infections damage the placenta and fetus. Those that
cause such damage remain important causes not only
of acquired SNHL but also of visual loss and
behavioural and neurological dysfunction. They are
traditionally grouped as TORCH infections (toxoplas-
mosis, others, rubella, cytomegalovirus, and herpes
simplex viruses); a more complete list is shown in the
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Figure 3: Environmental and genetic contributions to total congenital SNHL
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Figure 4: A cross-section of the cochlea showing two important cell groups
that express connexin 26
The non-sensory epithelial cells are shown in green; this group includes
interdental cells of the spiral limbus, inner and outer sulcus cells, sensory
supporting cells, and cells within the root process of the spiral ligament. The
connective-tissue cell system is shown in brown; this group includes fibrocytes
within the spiral ligament and spiral limbus, basal and intermediate cells of the
stria vascularis, and mesenchymal cells, which line the scala vestibuli and
interconnect the two populations of cell types. The inset shows how connexons
allow cells to become a functional syncytium. Each connexin 26 molecule is
known as a connexin, one of which is highlighted. Six connexins oligomerise to
form a connexon. Two connexons join to form a gap junction.
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panel.49 The incidence of congenital rubella has been
greatly decreased in more developed countries by the
introduction of the rubella vaccine in the late 1960s.
However, the world-wide burden of SNHL secondary to
congenital rubella syndrome remains high, and in
countries without a rubella vaccination programme,
congenital rubella syndrome continues to rank as the
most important cause of acquired congenital SNHL.50

In more developed countries, congenital
cytomegalovirus infection is generally recognised as the
most frequent cause of acquired hearing loss in
neonates. In the USA, for example, 0·4–2·5% of infants
shed cytomegalovirus at birth, corresponding to about
40 000 cytomegalovirus-infected infants each year. At
least 1000 of these infants have hearing loss detectable
at birth, and a further 3000–4000 have hearing loss in
infancy or childhood.51–53 Similar rates of cyto-
megalovirus infection have been observed in France
and Brazil, whereas the rate of congenital cytomegalo-
virus infection in the UK seems to be slightly lower at
0·3–0·4%. The incidence of congenital cytomegalovirus
in many less developed regions is unknown.54

Most congenitally infected neonates have no apparent
signs of cytomegalovirus infection at birth, but about
10% have systemic disease manifested by jaundice,
hepatosplenomegaly, a petechial or purpuric rash,
intrauterine growth retardation, or respiratory
distress.55,56 Half of these infants with clinical signs have
SNHL, and many experience progressive postnatal
deterioration in their hearing.57 Neonates with silent
cytomegalovirus infections generally escape neuro-
developmental sequelae, but 8–10% later develop some
degree of SNHL. Indicators for the development of
SNHL in this group of neonates have not been defined.58

Genetic SNHL in infants and young children
The relative contribution of genetics to the total number
of infants and young children with SNHL is unknown.
Inherited hearing loss diagnosed among children of
these age-groups is congenital hearing loss that was
present but missed during the neonatal period,
negligible or mild congenital hearing loss that was
undetectable by available screening methods but has
become more serious and thus detectable, or late-onset
SNHL. In children with late-onset and progressive
hearing loss, dilatation of the vestibular aqueduct must
be considered; CT imaging of the temporal bones is
warranted to exclude this possibility (figure 5).
Dilatation of the vestibular aqueduct is found with both
Pendred’s syndrome and DFNB4, allelic conditions
caused by mutations in SLC26A4. Although the DFNB4
phenotype lacks the thyroid disease associated with
Pendred’s syndrome, distinction between these types of
SNHL can be difficult if the thyroid disease is occult,
and the distinction may be somewhat artificial because
the diseases lie on a continuum.48

Acquired SNHL in infants and young children 
The most common cause of intermittent mild to
moderate hearing loss in infants and young children is
the conductive hearing loss caused by acute otitis media
or otitis media with effusion.59 Acquired SNHL in
infants and children is most commonly caused by
bacterial meningitis. Altogether, bacterial meningitis
accounts for about 6% of all cases of SNHL in children.60

The prevalence is about seven per 100 000 with a heavy
age bias for younger children.61 75% of affected children
are younger than 2 years, 15% are aged 2–5 years, and
10% are older than 5 years.62 Postmeningitic SNHL can
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Figure 5: Mondini’s dysplasia shown by CT of the temporal bone in a child
with Pendred’s syndrome
Both dilatation of the vestibular aqueduct and cochlear dysplasia are present in
this section. In the larger of the two inset images of a normal temporal bone,
the vestibular aqueduct is visible but much smaller (arrow). The cochlea
appears normal, and in the smaller inset image of a more inferior axial section,
the expected number of cochlear turns can be clearly counted (* in internal
auditory canal).

Panel: Infectious pathogens implicated in SNHL in children

Congenital infections
Cytomegalovirus
Lymphocytic choriomeningitis virus
Rubella virus
Toxoplasma gondii
Treponema pallidum

Acquired infections
Borrelia burgdorferi
Epstein-Barr virus
Haemophilus influenzae
Lassa virus
Measles virus
Mumps virus
Neisseria meningitidis
Non-polio enteroviruses
Plasmodium falciparum
Streptococcus pneumoniae
Varicella zoster virus
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be unilateral or bilateral, but bilateral loss is slightly
more common.62 The use of vaccines against
Haemophilus influenzae type B and several serotypes of
Streptococcus pneumoniae (seven-valent pneumococcal
conjugate vaccine; 23-valent pneumococcal polysac-
charide vaccine) have decreased the incidence of these
infections, and the use of steroid therapy early in the
disease course has lowered the associated morbidity and
mortality.63,64 More seriously ill children now survive with
several sensory and neural impairments, which include
SNHL in many cases.

School-aged children
Hearing loss that is presumed to be late onset and at
least moderate in severity is diagnosed in 1·2–3·3 per
10 000 school-aged children.14 Some of this hearing loss
is probably mild congenital progressive hearing loss that
does not become severe enough to be detected until early
childhood. Mild hearing loss that remains stable, by
contrast, can escape detection especially if only a few
frequencies are affected. As a result, much less is known
about this degree of hearing loss. Increasingly, however,
attention is being focused on milder hearing losses
(including unilateral losses) that affect 10–15% of school
students and have substantial adverse effects on school
performance and social interactions.65

Genetic SNHL in school-aged children 
Autosomal dominant non-syndromic SNHL is
commonly first detected in school-aged children during
routine audiological screening (table 1).66 Some types of
syndromic SNHL are also first recognised at this time,
reflecting the diagnosis of associated comorbidity that
was not previously noted on physical examination.
Common examples included Pendred’s and Usher’s
syndromes, both inherited as autosomal recessive
diseases so a family history is unhelpful as an indicator
of risk (table 2).48,67,68

Acquired SNHL in school-aged children 
There are no prevalence estimates of acquired SNHL in
school-aged children. New-onset SNHL can reflect silent
congenital cytomegalovirus infection;54 however, if
threshold shifts are restricted to the range 3–6 kHz,
noise trauma should be considered. In the USA, about
12·5% of children aged 6–19 years (7 million children)
have mild hearing loss at about 6 kHz, including about
6% of 7-year-olds.69,70 Data from Germany and Finland
are similar, with a loss of 20 dB or more in at least one
frequency affecting 7% of German and 8% of Finnish
schoolchildren aged 6–7 years.71,72 More boys than girls
are affected.

Risk factors and pathogenesis
Neonates
Although mutations in many different genes are
predictive of SNHL, the gene that accounts for most

cases by far is GJB2. Allele variants of this gene cause
roughly half of cases of congenital autosomal recessive
non-syndromic SNHL in the white population. In
children of northern European ancestry, the most
common SNHL-causing allele variant of GJB2 is the
c35delG mutation (hereafter called 35delG), which has a
carrier frequency of about 2·5% in the general
population.73 The prevalence of this mutation decreases
from south to north across Europe and from northwest
to southeast across Iran, which is consistent with a
purported founder effect in southern Europe about
8000 years ago.74–76 Also consistent with a founder effect
is the observation that in some populations the 35delG
mutation is rare. For example, the c167delT and
c235delC mutations are the most common GJB2 SNHL-
causing allele variants among Ashkenazi Jews and
Japanese people, respectively. The former has an ethnic-
specific carrier rate of 4·03% predicting a prevalence of
GJB2-related SNHL of 1 in 1765 among Ashkenazi Jews;
the Japanese-specific carrier rate of c235delC is about
1%.77,78

The high carrier frequency for the 35delG mutation in
children of northern European ancestry means that
roughly two-thirds of children with GJB2-related SNHL
are 35delG homozygotes.73 Of the remaining children
with GJB2-related SNHL, most are 35delG
heterozygotes and carry a second, non-complementary
mutation. Studies of several of these genotypes have
shown that the degree of hearing loss is related to the
type of mutation present. In general, children
segregating a nonsense and a missense mutation or two
missense mutations have better hearing than those
homozygous for the 35delG mutation.79,80 The
delineation of this genotype–phenotype correlation,
together with data obtained by large multicentre follow-
up studies, will provide valuable information within the
framework of universal newborn hearing screening.
Since the purpose of this screening is the early detection
and habilitation of children with congenital hearing loss,
complementing physiological testing of hearing with
GJB2 genotype–phenotype data could provide
prognostic information that might aid in the selection of
appropriate habilitation options for children with GJB2-
related SNHL.

Non-genetic risk factors for hearing loss during the
neonatal period include treatment in a neonatal
intensive-care unit, craniofacial anomalies, and
meningitis.81,82 Treatment in a neonatal intensive-care
unit alone, in the absence of an identifiable syndrome or
a family history of SNHL in childhood, increases the
likelihood of significant bilateral sensorineural or mixed
hearing loss in a neonate by at least ten times.83 Much of
the increase in risk is secondary to the morbidity related
to disorders necessitating or associated with treatment
in a neonatal intensive-care unit, such as hyperbilirubi-
naemia, prematurity, aminoglycoside use, and
mechanical ventilation; 40% of children who survive
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treatment in neonatal intensive-care units with SNHL
have other medical problems.14 The role of genetic
factors in this outcome has not yet been explored in
detail but is undoubtedly very complex.84,85

Infants and young children 
The risk factor most frequently associated with late-
onset SNHL is meningitis. As a result of vaccination
programmes, H influenzae type B meningitis has
virtually disappeared from most more developed
countries.86,87 S pneumoniae is now the dominant
causative organism of both bacterial meningitis and
meningitis-related SNHL.61 Vaccination programmes
against S pneumoniae are reducing morbidity and
mortality, but the effect of this preventive measure on
SNHL among children is not yet known.62 The onset of
SNHL after meningitis can be highly variable. Although
most children who lose their hearing do so within 48 h
of hospital admission,88,89 follow-up testing is important
since progression and fluctuation of hearing loss occur.88

School-aged children 
An increasingly important risk factor for late-onset
hearing loss among school-aged children is noise-
induced hearing loss from toys and personal listening
devices. An investigation of 25 toy cell phones and
walkie-talkies, for example, found that 17 produced
sound in amounts that would cause noise-induced
hearing loss (�150 dBA; a sound reading in decibels
made on the A-weighted scale of the sound meter).90

Much attention has been focused on loud music.
Personal listening devices can produce sound in excess
of 100 dBA. In the USA, current safety standards
mandated by the Occupational Safety and Health
Administration allow for 8 h of unprotected ear exposure
to sounds up to 90 dBA; therefore, an output of 100 dBA
has raised concern.91 However, work-place standards are
not necessarily applicable to leisure music standards,
since amplified music emphasises low frequencies
rather than the flat spectra of industrial noise, and
exposure to music is more likely to be intermittent than
continuous.92,93 Conflicting data have been reported on
whether leisure-noise-induced changes in high-
frequency thresholds occur in older teenagers,94,95 but all
investigators agree that chronic exposure to hazardous
noise can result in hearing loss and that noise-induced
hearing loss is insidious and incremental.

Management and treatment of SNHL
Unlike many clinical conditions, the management and
treatment of SNHL largely involves the social welfare
and educational systems rather than the medical care
system. For a child with congenital severe to profound
SNHL, the total lifetime cost of hearing loss exceeds
US$1 000 000. Special education costs amount to over
half of this total, and medical expenses and the purchase
of assistive devices add another US$100000.96

Neonates 
On the basis of the premise that early identification
improves speech and language and decreases the
expected lifetime cost of SNHL, universal newborn
hearing screening programmes have been established in
many countries; screening is incorporated into early
hearing detection and intervention programmes in
many places.12,29,97 As a result of these programmes, the
average age of detection of children with SNHL has
fallen from 12–18 months to 6 months or younger.28,98–107

Although the efficacy of universal newborn hearing
screening to improve long-term language outcomes
remains uncertain,10 results suggest that these
programmes facilitate normal language achievement for
more children with SNHL,108–110 thus offering cost
savings in the long term compared with either no
screening and selective screening.107

Whether false-positive screening results create undue
parental anxiety or have other adverse effects on family
dynamics has been explored. Investigations on false-
positive data for disorders such as cystic fibrosis and
phenylketonuria show that identification of a child as
abnormal in the neonatal period can engender lasting
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Figure 6: All cochlear implants share key components, including a
microphone, speech processor, and transmitter coil, shown in a 
behind-the-ear position in this diagram
The microphone/speech processor picks up environmental sounds and digitises
them into coded signals. The signals are sent to the transmitter coil and relayed
through the skin to the internal device imbedded in the skull. The internal device
converts the code to electronic signals, which are transmitted to the electrode
array wrapping around the cochlea. The inset shows the radiographic
appearance of the stimulating electrode array. Reproduced with permission from
MED-EL Corporation, Innsbruck, Austria.
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parental anxiety and have long-term adverse effects on
the relationship between parent and child and later
psychological development.108–111 Some investigators have
suggested that there may be similar effects for false-
positive results in universal newborn hearing screening
programmes.112,113 However, studies conducted with
parents of infants screened in these programmes have
failed to find evidence of undue parental anxiety or long-
term adverse effects on the parent–child relation-
ship.114–118

For virtually all children with bilateral SNHL, a trial
with hearing aids or a frequency-modulation device is
appropriate, although for those with severe to profound
SNHL, the habilitation approach is likely to become more
complex. For these children, the earliest parental
decision may be focused on the choice of
communication. The options are generally categorised
as: auditory-oral, which includes auditory verbal training,
oral training, lip reading, and cued speech;
visual/gestural/manual training, which includes various
recognised sign languages such as the American and
British forms; and a combination of speech and sign,
referred to as total communication.119

Another consideration is cochlear implantation
(figure 6). For infants with SNHL, this technique has
become standard treatment in many areas when there is
lack of progress with well-fitted hearing aids and
intensive auditory training.120 In the early days of
paediatric implantation, candidates had to have a pure-
tone average (average of 1 kHz, 2 kHz, and 4 kHz) of at
least 100 dB and aided thresholds of 60 dB or more in the
absence of open-set speech discrimination (the ability to
understand spoken words),121 but current criteria are less
stringent.

Several implant programmes have shown that children
given implants between the ages of 12 months and 36
months outperform those treated at ages
37–60 months.122 When tested after a fixed
postimplantation interval, children who undergo the
procedure when younger have better scores on speech
perception measures than those treated when older.123 On
the basis of these findings, implant criteria in the USA
have been adjusted to include children aged 12 months
or older with pure-tone averages of at least 90 dB and
discrimination scores of 30% or less in the best
condition, and now the most lenient current criteria
include children with severe losses (pure-tone averages of
70 dB or more). The principle behind these relaxed
criteria is that children typically perform better after
implantation. However, implantation in children with
residual hearing is a cause for concern because outcomes
are not always predictable.121

Speech recognition performance increases as age at
implantation decreases and as length of use increases.122

Preliminary studies of the cause of SNHL as an indicator
of successful implant use have also shown that a child’s
GJB2 mutation status independently affects reading and

cognitive performance outcomes. Children with GJB2-
related SNHL score significantly higher on a non-verbal
cognitive measure of intelligence (block design) and on a
measure of reading comprehension than do children
with SNHL caused by other factors.124

Infants and young children 
According to recommendations by the American
Academy of Pediatrics, children aged 2 months and older
with bacterial meningitis should be treated with
dexamethasone at a daily dose of 0·6 mg/kg divided into
four doses for the first 4 days of therapy.125 This treatment
protocol is supported by a meta-analysis of randomised
controlled trials from 1988 to 1996, which showed a
significant reduction in the frequency of SNHL with
H influenzae type B meningitis and a trend toward
benefit with S pneumoniae meningitis.125 Of concern is
the possibility that the use of dexamethasone can
decrease the penetration of certain antibiotics, such as
vancomycin, into the cerebrospinal fluid. Consequently,
many infectious-disease experts recommend repeat
examinations after 24–48 h to confirm sterilisation of
cerebrospinal fluid in dexamethasone-treated infants and
young children with S pneumoniae meningitis.

The frequency of SNHL in infants and children who
survive bacterial meningitis other than that caused by
H influenzae type B is 7%; in roughly 25% of these
children the hearing loss is detected late.60,62,126,127 Late
detection adversely affects habilitation options, since
ossification of the cochlea can occur as soon as 2 months
after meningitis.128 This complication makes cochlear
implantation with complete electrode insertion extremely
difficult if not impossible, so early identification of SNHL
caused by meningitis is extremely important.

A multivariate analysis by Koomen and colleagues62

showed that five variables are important predictors for
bacterial-meningitis-associated hearing loss: duration of
symptoms longer than 2 days, absence of petechiae,
glucose concentrations in cerebrospinal fluid of
0·6 mmol/L or lower, S pneumoniae as the cause, and
ataxia. By use of the presence of any one of these risk
factors to identify children for hearing screening, 60% of
all postmeningitic children will require screening but no
child with hearing loss will go undetected.62 A simpler
strategy, based on the premise that bacterial meningitis
of any cause can lead to hearing loss of any degree in a
child of any age, is to screen all children diagnosed with
bacterial meningitis.60

School-aged children
Most children with moderate to profound SNHL are
recognised and treated before they reach school age, but
those with mild or unilateral SNHL can remain
undiagnosed for years. The first indication of a mild loss
is commonly difficulty in understanding speech in
adverse conditions, although in addition to the severity of
SNHL, various factors including age at onset, the
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presence of other disabilities, and the attitudes and
beliefs of the family can compound the effect of any
degree of hearing loss.

Mild SNHL can have effects in the areas of academic,
social, and emotional development that should be
recognised and treated. For example, in the early school
years, a child with mild SNHL is more likely to
experience difficulties in academic activities, attention,
and communication that are greater than might be
predicted from the degree of hearing loss alone.65 Early
differences in academic test scores disappear in many
older school students, but many of these children
continue to have difficulty with emotional and social
interactions.

Prevention 
No satisfactory therapy is yet available to correct SNHL by
the replacement of inner and outer hair cells, although
the ability to generate new hair cells in the mature organ
of Corti in mammals does pave the way for research
focused on optimising repair of inner-ear damage at a
structural and functional level.129–131 Current measures to
prevent SNHL in children should be focused on
decreasing the incidence of genetic SNHL through
educational programmes and prevention of acquired
SNHL through the use of vaccination programmes.

Prevention of genetic SNHL 
In most human populations, marriages are not random.
Religion, economy, cultural traditions, geography, and
family pressures are decisive factors that influence
selection of spouses. These factors also increase
consanguinity and lead to endogamy. The resultant
genetic homogeneity increases the incidence of rare
autosomal recessive diseases, a relation first described by
Garrod over 100 years ago and used today to localise
many of the genes implicated in autosomal recessive
non-syndromic SNHL.132

The prevalence of consanguinity varies by culture and
is highest in Arab countries, followed by India, Japan,
Brazil, and Israel.133 The most common union is a
marriage between first cousins.134–137 These couples tend
to come from lower educational and socioeconomic
groups, the traditionally religious, and the early
married.137 Offspring of such marriages inherit identical
complementary strands of DNA through a parentally
shared common ancestor at 6·25% of all loci, a reflection
of the high coefficient of inbreeding. Focused genetic
counselling and health-education efforts might help to
decrease the incidence of autosomal recessive non-
syndromic SNHL in these populations.

Prevention of acquired SNHL
In less developed countries without a rubella vaccination
programme, congenital rubella syndrome remains the
most important cause of acquired congenital SNHL.50

The burden of mortality and morbidity falls most heavily

on people living in poverty and in crowded urban centres,
and a well-run vaccination programme would be a simple
way to improve their life expectancy. Disease burden is a
central issue in the implementation of any vaccination
programme, and data on disease burden are necessary
for patients’ advocacy, development of public-health
policy, and vaccine development. The WHO Global
Program for Vaccines and Immunization has provided
recommendations for the prevention of congenital
rubella syndrome, and preliminary studies also support
the inclusion of vaccines against H influenzae and
S pneumoniae.138,139 In more developed countries, where
congenital cytomegalovirus has supplanted congenital
rubella syndrome as the commonest cause of acquired
congenital SNHL in children, the development of an
effective vaccine remains a high priority.140

Conclusion
The prevalence of SNHL is decreasing as a result of
improvements in health care and the expansion of
immunisation programmes around the world. At the
same time, advances and discoveries in human genetics
have improved our ability to diagnose genetic SNHL.
Current habilitation options centre on hearing aids and
cochlear implants, the latter being the foremost
treatment for children with severe to profound SNHL. In
the coming decades, novel habilitation options will
become available for specific types of SNHL. Most
probably these therapies will involve medical treatments
to reduce the risk of noise-induced hearing loss and gene-
targeting therapies to prevent the progression of
inherited SNHL.
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